Aedes Larva Detection Using Ensemble Learning to Prevent Dengue Endemic
Md Shakhawat Hossain, Md Ezaz Raihan, Md Sakir Hossain, MM Mahbubul Syeed, Harunur Rashid, Md Shaheed Reza
BioMedInformatics , Vol. 2 (3)

Abstract
Dengue endemicity has become regular in recent times across the world. The numbers of cases and deaths have been alarmingly increasing over the years. In addition to this, there are no direct medications or vaccines to treat this viral infection. Thus, monitoring and controlling the carriers of this virus which are the Aedes mosquitoes become specially demanding to combat the endemicity, as killing all the mosquitoes regardless of their species would destroy ecosystems. The current approach requires collecting a larva sample from the hatching sites and, then, an expert entomologist manually examining it using a microscope in the laboratory to identify the Aedes vector. This is time-consuming, labor-intensive, subjective, and impractical. Several automated Aedes larvae detection systems have been proposed previously, but failed to achieve sufficient accuracy and reliability. We propose an automated system utilizing ensemble learning, which detects Aedes larvae effectively from a low-magnification image with an accuracy of over 99%. The proposed system outperformed all the previous methods with respect to accuracy. The practical usability of the system is also demonstrated.
Citation
Md Shakhawat Hossain, Md Ezaz Raihan, Md Sakir Hossain, MM Mahbubul Syeed, Harunur Rashid, Md Shaheed Reza. "Aedes Larva Detection Using Ensemble Learning to Prevent Dengue Endemic." BioMedInformatics 2.3 (2022).
BibTeX
@article{pub8_2022, title={Aedes Larva Detection Using Ensemble Learning to Prevent Dengue Endemic}, author={Md Shakhawat Hossain, Md Ezaz Raihan, Md Sakir Hossain, MM Mahbubul Syeed, Harunur Rashid, Md Shaheed Reza}, journal={BioMedInformatics}, volume={2}, number={3}, year={2022}, doi={https://doi.org/10.3390/biomedinformatics2030026} }
Publication Details
2022
BioMedInformatics
2
3
Share
Related Publications

Ripen Banana Dataset: A Comprehensive Resource for Carbide …
Elman Alam, Md Tarequl Islam, Ishrat Zahan Raka, Onamika Sarkar Ritu, Md Shakha…

A Comprehensive Dataset of Surface Water Quality Spanning 1…
Md Rajaul Karim, MM Mahbubul Syeed, Ashifur Rahman, Khondkar Ayaz Rabbani, Kani…

Predicting the effect of Bevacizumab therapy in ovarian can…
Md Shakhawat Hossain, Munim Ahmed, Md Sahilur Rahman, MM Mahbubul Syeed, Mohamm…